
December 2006 www.stsc.hill.af.mil 25

Developing secure software requires
engineering and management attention,

as well as extra effort and resources. Rather
than being treated as an add-on, security must
be built in throughout the software life cycle,
using a mixture of good software engineer-
ing practices (to ensure quality software in
general) and good security practices (to
ensure that exploitable vulnerabilities are not
present). Integrating security practices with
software engineering practices throughout
the development process helps an organiza-
tion anticipate security failures and develop
software that can sustain attacks.

Currently, the predominant method for
finding vulnerabilities is to penetrate and patch.
This approach focuses most of the effort on
the latter stages of the software life cycle, e.g.,
testing for a set of known vulnerabilities or
waiting for a vulnerability to be exploited in
delivered code. Only after such a vulnerabili-
ty is found does the development team mod-
ify the software to address that vulnerability
[1]. The effectiveness of this approach is
highly correlated with the quality of the test-
ing activities. An experienced tester can be
quite effective, but an inexperienced tester
can miss many important issues.

As evidence of the problems associated
with testing for security vulnerabilities,
although sensitivity to and focus on security
problems has increased in recent years, the
number of software vulnerabilities found in
deployed software has actually increased –
not decreased. For example, according to the
United States Computer Emergency
Readiness Team (US-CERT), the number of
new vulnerabilities discovered in software
has been growing at rates close to 140 per-
cent, recently in excess of 5,000 per year.
Other vulnerability collections show similar
trends – e.g., the National Vulnerability
Database has nearly 13,000 documented vul-
nerabilities, and Bugtraq, a moderated mail-
ing list where vulnerabilities are reported and
discussed, holds discussions on about 400
items per month. These figures make it clear
that there is a national need to better address

software security.
An improvement over this penetrate and

patch mentality is to build security in from the
beginning of the product lifecycle [2, 3].
Governmental organizations like the
Department of Homeland Security (DHS)
have already realized the benefits of this
approach and are promoting research to
make it happen. Standard software engineer-
ing approaches for building in software qual-
ity provide some insight into building in secu-
rity. Traditionally, software engineering has
defined a defect as an error, fault, or failure in
the software system or its related artifacts.
Security vulnerabilities are a special type of
these more general software engineering
defects and therefore benefit from similar
detection and removal approaches.

Although no concrete guidelines exist,
there is a growing recognition that early life-
cycle issues do play an important role in the
development of secure software. Problems
in the early life-cycle phases have caused
some costly and highly visible problems lead-
ing to untrustable systems. A well-publicized
example of this type of problem was the
theft of personal data from a database of
background files on most American citizens
maintained by the ChoicePoint corporation.
The theft of data occurred when criminals
set up fake companies (e.g. debt collectors,
insurance agencies) and gained access to
ChoicePoint’s databases [4]. This security vul-
nerability can be viewed as a requirements
and design problem. Had the creators of the
software included requirements for verifying
the legitimacy of a company prior to allowing
access to private information, this theft could
have likely been prevented.

Security experts have also clearly recom-
mended the need for early life cycle work to
address security vulnerabilities [5]. All of this
evidence combines to create a powerful mes-
sage: Although often ignored, decisions
made (or missed) in the early life cycle have a
large impact on the level of security achiev-
able in the final system.

This message is quite familiar to software

engineers. Software engineering practitioners
and researchers have observed (and mea-
sured) that the earlier defects are found in the
software life cycle the easier and cheaper they
are to repair [6]. Many software engineering
best practices are concerned with how to
apply early life-cycle verification and valida-
tion (V&V) practices to build quality in
throughout the life cycle rather than test it in
during late life-cycle testing phases. Viewing
security vulnerabilities as a special type of
defect allows for building security into sys-
tems in the same way as building quality into
systems. The ultimate goal is to integrate the
best practices from the security engineering
and software engineering communities into a
set of techniques for identifying and remov-
ing security vulnerabilities early in the soft-
ware life cycle. This article illustrates the
adaptation of one such technique, PBR, to
address the security vulnerability problem
during a requirements inspection process.

An Early Life-Cycle Approach to
Security
A large number of software engineering
studies have established inspections as an
effective method for reducing defects in soft-
ware systems [6]. An inspection is a static
review process in which a software artifact
(e.g. requirements document, design docu-
ment, or code) is reviewed by one or more
inspectors to verify that it meets a set of qual-
ity properties. Companies like Microsoft have
recognized the potential reduction of vulner-
abilities that inspections can cause in the early
life-cycle phases and have created their own
checklists focused on early life-cycle issues.

One of the most successful examples of
inspection use came from the Software
Engineering Laboratory (SEL) at NASA’s
Goddard Space Flight Center. Figure 1 (see
page 26) illustrates the impressive reduction
in defect rates (per thousand developed lines
of code [DLOC]) achieved on software pro-
jects over a nineteen year period at the SEL.
This chart shows sustained continuous
improvement over a long period of time in an

Finding and Fixing Problems Early:A Perspective-Based
Approach to Requirements and Design Inspections

Dr. Forrest Shull and Dr. Ioana Rus
Fraunhofer Center for Experimental Software Engineering

Viewing security vulnerabilities as a specific type of software defect allows proven software engineering techniques for finding
and fixing them to be used early in the development of the product. Finding and fixing these problems early (i.e. at the require-
ments or design phase) will reduce the overall risk and cost of the product. This article describes the application of a previ-
ously successful early life cycle software inspection approach (perspective-based reading [PBR]) to the problem of software secu-
rity. Excerpts from this tailored approach are provided along with guidance on it use.

Dr. Jeffrey C. Carver
Mississippi State University

Software Engineering Technology

 



26 CROSSTALK The Journal of Defense Software Engineering December 2006

organization that built real-time software sys-
tems to support safety critical missions cost-
ing millions of dollars. Although much effort
was spent on software quality improvement
at Goddard during this time period, Frank
McGarry and Mike Stark, two former direc-
tors of the SEL, have both credited the intro-
duction and maintenance of inspections as
being the most important factor in the error
rate reduction.

One of the difficulties in performing
early life-cycle reviews is the amount of
human judgment required. Static analysis
tools do exist, but these tools focus mainly
on code. Early life-cycle V&V by its very
nature is human intensive: Identifying and
predicting the impacts of requirement or
design decisions is not easily amenable to an
automated checking approach. To be done
effectively, these tasks require the experience
and knowledge necessary to make good judg-
ment calls. For security problems, this means
that security expertise is essential, but often,
lacking in software engineers. Therefore, a
mechanism is needed to supplement the soft-
ware engineers’ knowledge with security spe-
cific knowledge. PBR is a technique that can
be used for encoding and transferring securi-
ty-relevant expertise.

ATailorable, Perspective-Based
Approach
Perspective-based inspection is a variant of a
formal technical review, which provides a
useful framework for integrating security
concerns. This type of inspection is based
on explicitly defining the important stake-
holders for a particular artifact and the types
of issues that are of importance to the team.
Rather than asking each reviewer to search
for all types of problems, the perspective-
based approach requires inspectors to exam-
ine the document using a role-based scenario
based on how one specific stakeholder

would use the document to build the system.
For example, an inspection of system
requirements includes an inspector using a
tester perspective. This inspector reviews the
requirements by following a scenario in
which he/she considers how to generate test
cases based on the requirements. Any time
the inspector experiences difficulty in using
the document to complete his scenario he
records this difficulty as an issue that must
be fixed. This list of issues then becomes the
list of items that is returned to the author of
the document for repairs.

The set of appropriate stakeholders and
issue types must be tailored for different
environments. In this sense, the perspective-
based approach provides a set of guidelines
for creating an effective, tailored inspection
technique, not a one-size-fits-all process.

By emphasizing the stakeholders, the per-
spective-based approach provides a helpful
way to make the need for collaboration
between software and security engineers
explicit. Each of these roles must be repre-
sented by at least one inspector on the review
team. This approach is also useful when it is
not possible to get an inspector with suffi-
cient security expertise to participate in the
inspection process. Creating a scenario based
on the way each stakeholder uses the docu-
ment captures that stakeholder’s expertise
about early life-cycle indicators of potential
security vulnerabilities that can be used by
more novice inspectors.

To conduct a perspective-based inspec-
tion, practitioners first need to decide what
documents should be inspected. Inspection
of software-specific documents (like the
requirements specification or design docu-
ment) needs to be augmented with the
inspection of security-specific artifacts (such
as threat models). The goal of the inspection
must be to ensure that the security models
are internally consistent and correct, as well
as that their implications for the system are

adequately reflected in the software work
products, to support construction of a cor-
rect end-product.

For the documents that have been select-
ed, a list of stakeholders must be compiled,
considering the following:
• Stakeholders in downstream phases who need

the document to perform their own job.
Related to security, the following are
some examples: testers, who need to
ensure that security requirements are
clearly stated in terms of their expected
behavior and the functionalities to
which they should be applied; designers
and/or developers, who need to ensure
that security policies are specified in
enough detail to allow for correct imple-
mentation; and users, who need to
ensure that the final behavior of the sys-
tem, including all security policies, will
meet their needs.

• Stakeholders from previous phases who want
to ensure that their decisions relevant to
system design are adequately reflected in
the document. Related to security, an
important stakeholder is the developer of
threat models and other early life-cycle
security artifacts, who needs to ensure
that the behavior identified by these
models is in the system artifacts.

• Stakeholder’s specific types of expertise need to
be correctly reflected in the software
work documents. An important security-
related perspective is a black hat user who
focuses specifically on issues that could
lead to exploitable security vulnerabilities
and increases the risk of a successful
attack on the software.
For each perspective identified, a scenario

that reflects the normal day-to-day work
activity of the respective stakeholder must be
created. Different stakeholders’ scenarios
require the inspectors to focus on different
aspects of the document, while the entire set
of perspectives covers the whole artifact. By
focusing each reviewer on a separate task, the
overlap among the responsibility of various
inspectors is reduced. At the same time, the
importance and necessity of the role played
by each inspection member increases because
no two reviewers focus on the same set of
defects. This approach combats the assump-
tion that simply having more eyes on a docu-
ment increases the chances of finding prob-
lems. In reality, we find the opposite to be
true: Having more people look at the same
document without a specific focus allows
each inspector to assume that his/her exper-
tise and time are not crucial, and that some-
one else will find any problems they miss.
This is a potentially dangerous assumption.

Our previous experiences in organiza-
tions such as NASA have shown perspective-
based inspections to be especially useful for

0

2

4

6

8

10

12

14

16

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS
ASP

ADEAS

GROAGSS FDASF

BBXRT

GOADA

UARSTELS UARSAGSS

TONSIBM

GOESIM

SAMPEXTS

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEX
FASTELS

AEM

GROHUD SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEA

SW SS

SWASXTLS

19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Project Midpoint

Ada Projects

FORTRAN Projects

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS
ASP

ADEAS

GROAGSS FDASF

BBXRT

GOADA

UARSTELS UARSAGSS

TONSIBM

GOESIM

SAMPEXTS

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEX
FASTELS

AEM

ROHUD SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEA

SW SS

SWASXTLS

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS
ASP

ADEAS

GROAGSS

COBSM

FDASF

GOADA

UARSTELS UARSAGSS

TONSIB

POWITS

GOESIM

SAMPEXTS

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEX
FASTELSFASTELFASTFASTELS

AEM

ROHUD SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEAGSS

SWASAGSS

SWASXTLS

19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994 19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Project Midpoint

Ada Projects

FORTRAN Projects

Development Error Rates (1976-1995)

Each data point represents

one software project.

Figure 1: Demonstrated Defect Reduction in Errors per 1,000 DLOC at NASA’s SEL



December 2006 www.stsc.hill.af.mil 27

Finding and Fixing Problems Early:A Perspective-Based Approach to Requirements and Design Inspections

helping bring novice reviewers up to speed,
by giving them a clear direction of how to get
started on their analysis of the document,
and by giving them a clear subset of con-
cerns to focus on rather than having to wear
all the hats. Perspective-based inspections
were evaluated at Goddard with a controlled
experiment comparing different approaches
for reviewing requirements specifications.
Using the perspective-based approach
allowed individual reviewers to find up to 30
percent more defects, on average, than when
they used the standard NASA review
approach. When team results were statistical-
ly simulated from the individual data, teams
using perspectives also found up to 30 per-
cent more defects than teams using the stan-
dard NASA approach. These differences
were statistically significant [7].

This study has been replicated multiple
times with similar results. A series of other
studies provide support for the benefits of
using a perspective-based approach for
inspections of different types of artifacts and
different organizations:
• A study conducted at Lucent Technolo-

gies indicated that inspection teams using
perspectives to find defects in formal
requirements models were significantly
more effective than teams using only
checklists or unstructured techniques [8].

• A study at a U.S. government organiza-
tion in 1998 showed that teams found
about 30 percent more usability problems
in Web interfaces when using a perspec-
tive-based inspection approach [9].

• A study of German software profes-
sionals from various companies produc-
ing object-oriented designs showed that
teams using the perspective-based
approach found 41 percent more
defects than teams using only checklists,
and the cost per defect was significantly
lower [10].

• A study of code inspections at Bosch
Telecom in Germany indicated that
teams using perspectives were more
effective at finding defects than teams
using the baseline inspection approach
with the improvement being statistically sig-
nificant in two of the three experimental
runs. The cost per detected defect was
also significantly lower for the perspec-
tive-based approach in all runs [11, 12].

• A study of object-oriented design inspec-
tions at Ericsson in Sweden showed that
teams using perspectives found more
defects than those using their usual
approach, although the perspective-based
inspections took more time [12].

Tailoring Perspective-Based
Reading for Security

Based on the previous proven success of
using the perspective-based approach to find
generic software quality defects, we have tai-
lored this approach to focus on software
security. In this paper, we describe a set of
perspectives for a requirements inspection.
To perform this tailoring, we augmented two
of the standard PBR perspectives (the design-
er and the tester) with additional security spe-
cific questions. In addition, we created a new
perspective based on the needs of a black hat
tester. The remainder of this section briefly
describes each technique.

The designer perspective has the goal of
ensuring that there is enough, consistent
information present in the requirements to
successfully create a system design. The exist-
ing scenario is augmented with questions that
focus on whether important security-related
information has been correctly specified
rather than being left up to the designer, who
may not be familiar with all details of the
security policy. Examples of the new ques-
tions that the reviewer using the designer per-
spective should consider when following this
perspective include the following:
• Have the requirements specified enough

information about the security policies
for the designer to understand whether a
layered security policy is required instead
of a single point of vulnerability?

• If several administrator roles are defined,
have they been defined as separate
accounts with limited access to security
resources, or a single account with com-
prehensive super user permissions?
In a similar fashion, the scenario for

the tester perspective remains unchanged,
but is augmented with security specific
questions. The inspector using the tester
perspective has the goal of ensuring that
the trustworthiness of the system will be
knowable during the testing phase.
Examples of the new questions that the
reviewer using the tester perspective
should consider include the following:
• Have the requirements specified appro-

priate exception-handling functionality?
• Have the requirements specified ade-

quate safeguards that would take effect
once a malicious user has gained unau-
thorized access to the system?

• Does the system have a well-defined sta-
tus, either a secure failure state or the start
of a plausible recovery procedure, after a
failure condition?
Finally, the black hat perspective is a new

one (i.e. not tailored from the previous set of
perspectives) which focuses the reviewer on
finding weaknesses in the requirements that
could be exploited via an attack. The scenario
that the reviewer follows is to create a set of
malicious attack scenarios that seek to exploit
system vulnerabilities. While creating this sce-

nario, the reviewer focuses on three types of
information relevant at the requirements
stage: Cryptography, Authentication/Auth-
orization, and Data Validation. These types
of information, along with the related ques-
tions were adapted for requirements from
Araujo and Curphey’s article on Security
Code Reviews [13].

Cryptography relates to the encoding mech-
anisms specified for data items within the
system. During the review, the inspector is
looking for underspecified or incorrectly
specified features that could be exploited.
Example questions include the following:
• Can the encoding mechanisms specified

for transmission and storage of data be
broken?

• Do the cryptographic mechanisms speci-
fied follow well-known, well-document-
ed, and publicly scrutinized algorithms,
and if not, can they be easily broken?
Authentication/Authorization focuses the

reviewer on determining how unauthorized
users could gain access to the system.
Example questions include the following:
• Can the protocols for validating user

identity be broken?
• If account lockout is specified, are there

requirements in place to prevent denial-
of-service attacks?

• Can user privileges be artificially elevated
due to omissions or poorly specified
requirements?
Data Validation is an important source of

security vulnerabilities and focuses the
reviewer on determining whether invalid data
could be entered into the system. An exam-
ple question: Do the requirements leave any
opportunities for invalid data to be entered
by the lack of validation of external data?

These excerpts from the requirements
review techniques illustrate that formulating
inspection methods must fully leverage the
intelligence and flexibility of the human
beings involved in the procedure. As much as
possible, inspectors should avoid using algo-
rithmic heuristics that would be candidates
for tool support instead (for example, keep
coupling low by ensuring that no class calls
more than six others). Rather, inspectors
should be given tasks that require both
semantic understanding of the system and
judgment calls. The flexibility of such an
approach allows inspectors to focus both on
bad things that should be avoided (excessive
coupling) and good things that are omitted
(exception handling for appropriate func-
tionalities). Similar ideas can be incorporated
into the reviews of the threat models, archi-
tecture and design documents by adding sim-
ilar questions specific to each artifact.

Conclusions
The decisions made in early life-cycle devel-



28 CROSSTALK The Journal of Defense Software Engineering December 2006

Software Engineering Technology

About the Authors

Dr. Forrest Shull is a
senior scientist at the
Fraunhofer Center for
Experimental Software
Engineering, Maryland
(FC-MD). At FC-MD he

is project manager and member of the
technical staff for projects with clients
that have included Fujitsu, Motorola,
NASA, and the U.S. Department of
Defense. He is responsible for research
projects in the areas of software defect
reduction and software practice evalua-
tion. He received his doctorate degree
from the University of Maryland,
College Park.

Fraunhofer Center for 
Experimental Software
Engineering Maryland 
University of Maryland
4321 Hartwick RD STE 500
College Park, MD 20742-3290
Phone: (301) 403-8970
Fax: (301) 403-8976
E-mail: fshull@fc-md.umd.edu

Dr. Jeffrey Carver is an
Assistant Professor in the
Computer Science and
Engineering Department
at Mississippi State Uni-
versity. His research

interests include software process
improvement, software quality, software
inspections, and software engineering for
high performance computers. Carver’s
research has been funded by the U.S.
Army Corps of Engineers, the U.S. Air
Force, and the National Science
Foundation. He received his doctorate
from the University of Maryland in
2003.

Department of Computer 
Science and Engineering
300 Butler Hall
Box 9637
Mississippi State University, MS 
39762
Phone: (662) 325-0004
Fax: (662) 325-8997
E-mail:carver@cse.msstate.edu

Dr. Ioana Rus is a scien-
tist at the FC-MD where
she serves as a technical
area lead for safety and
security. Rus has repre-
sented FC-MD as a

member of the Software Assurance
Processes and Practices Working Group
and as a reviewer for the DHS Software
Assurance Common Body of Knowl-
edge. She received her doctorate from
Arizona State University.

Fraunhofer Center for 
Experimental Software 
Engineering Maryland 
University of Maryland
4321 Hartwick RD STE 500
College Park, MD 20742-3290
Phone: (301) 403-8971
Fax: (301) 403-8976
E-mail: irus@computer.org

opment phases have a large impact on
whether secure systems are achievable or
not. Just as for other types of quality
issues, early life-cycle V&V activities can
detect and repair security issues early on,
for example, by checking that security
requirements are well thought-out, feasi-
ble, and consistent with user needs; that
system architectures exhibit good design
principles, making them easier to maintain
and fix without introducing vulnerabilities;
or that components are designed so that if
security measures are breached in one
component, an attacker gains access only
to a limited part of the system. Also, as for
other types of quality issues, finding secu-
rity problems early saves time and effort
for the development team by avoiding the
need to fix the many downstream docu-
ments that instantiate early decisions.

A perspective-based inspection, as
illustrated in this article, is one approach
which has been very effective at early life
cycle defect detection and can be used to
tailor V&V techniques to focus on securi-
ty. While other approaches are certainly
possible, the explicit reliance of the per-
spective-based approach on the needs of
the stakeholders gives practitioners a way
to bring the right expertise to bear and
capture best practices so they can be
employed by a larger set of inspectors.u

References
1. McGraw, G. “Building Secure Soft-

ware: Better Than Protecting Bad
Software.” IEEE Software 19.6 (2002):
57-58.

2. Beaver, K. and Sima, C. “Software De-
velopment: Building Security In.”
Security.itworld. 5 Sept. 2006.

3. Grance, T., Hash, J., and Stevens, M.
“Security Considerations in the Infor-
mation System Development Life
Cycle.” NIST Special Publication 800-
64, 2004.

4. Sullivan, B. “Data Theft Affects
145,000 Nationwide.” MSNBC. 18
Feb. 2005.

5. McGraw, G. Software Security:
Building Security In. Addison-Wesley
Professional, 2006

6. Shull, F., et al. “What We Have
Learned About Fighting Defects.”
Proceedings of IEEE Symposium on
Software Metrics. 2002.

7. Basili, V., et al. “The Empirical
Investigation of Perspective Based
Reading.” Empirical Software Engi-
neering – An International Journal 1.2
(1996): 133-164.

8. Porter, A. and Votta, L. “Comparing
Detection Methods for Software Re-
quirements Inspections: A Replication
Using Professional Subjects.” Empir-

ical Software Engineering – An Inter-
national Journal 3.4 (1998): 355-379.

9. Zhang, Z., Basili, V., and Shneiderman,
B. “Perspective-Based Usability In-
spection: An Empirical Validation of
Efficacy.” Empirical Software Engi-
neering – An International Journal 4.1
(1999): 43-70.

10. Laitenberger, O., Atkinson, C., Schlich,
M., and El Emam, K. “An Experi-
mental Comparison of Reading Tech-
niques for Defect Detection in UML
Design Documents.” Journal of Sys-
tems and Software 53.2 (2000):183-204.

11. Laitenberger, O., El Emam, K., and
Harbich, T.G. “An Internally Repli-
cated Quasi-Experimental Compari-
son of Checklist and Perspective
Based Reading of Code Documents.”
IEEE Transactions on Software
Engineering 27.5 (2001): 387-421.

12. Conradi, R., et al. “Object-Oriented
Reading Techniques for Inspection of
UML Models – An Industrial Experi-
ment.” Proceedings of European
Conference on Object-Oriented
Programming (ECOOP ’03), Darm-
stadt, Germany, 2003.

13 Araujo, R. and Curphey, M. “Software
Security Code Review: Code Inspec-
tion Finds Problems.” Software
Magazine: July 2005.


